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Abstract
We consider the semiclassical limit of the spectral form factor K(τ) of fully
chaotic dynamics. Starting from the Gutzwiller-type double sum over classical
periodic orbits we set out to recover the universal behaviour predicted by
random-matrix theory, both for dynamics with and without time reversal
invariance. For times smaller than half the Heisenberg time TH ∝ h̄−f +1, we
extend the previously known τ -expansion to include the cubic term. Beyond
confirming the random-matrix behaviour of individual spectra, the virtue of
that extension is that the ‘diagrammatic rules’ come in sight which determine
the families of orbit pairs responsible for all orders of the τ -expansion.

PACS number: 05.45.Mt

1. Introduction

One of the fascinating quantum signatures of chaos is the universal behaviour of the correlation
functions of the spectral density of energy levels, for general hyperbolic dynamics [1]. Three
universality classes were suggested by Dyson and Wigner; one, called ‘unitary’, has no time
reversal symmetry, while the other two do have Hamiltonians H commuting with an anti-
unitary time reversal operator T ; if T 2 = 1 one speaks of the ‘orthogonal’ class while the
‘symplectic’ case has T 2 = −1. The Fourier transform of the two-point correlator of the level
density, called the spectral form factor, is predicted by random-matrix theory (RMT) [2] as

Kuni(τ ) = τ Korth(τ ) = 2τ − τ ln(1 + 2τ) (1)

in the unitary and the orthogonal case; here τ is a time made dimensionless by referral to the
Heisenberg time TH ∝ h̄−f +1, with f being the number of freedoms; the results (1) hold in the
(semiclassical) limit of large dimension of the matrix representation of H and for times up to
the Heisenberg time, 0 � τ � 1. The orthogonal form factor allows for the Taylor expansion
Korth(τ ) = 2τ − 2τ 2 + 2τ 3 + · · ·, for 0 � τ < 1

2 .
Understanding the observed fidelity of individual dynamics to RMT has been an elusive

goal, in spite of considerable efforts based on parametric level dynamics, semiclassical
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periodic-orbit theory, and the so-called nonlinear sigma model [2]. We shall here take a
non-trivial step towards that goal, on semiclassical ground.

Periodic-orbit theory in the style of Gutzwiller [2, 3] gives the form factor of an individual
spectrum as the double sum

Kpo(τ ) = T −2
H

〈∑
γ,γ ′

Aγ A∗
γ ′ exp(i(Sγ − Sγ ′)/h̄)δ

(
τ − Tγ + Tγ ′

2TH

)〉
(2)

where Sγ , Tγ and Aγ are the action (including the Maslov phase), period and (dimensionless)
stability amplitude of the γ th orbit; the angular brackets demand averages (i) over the centre
energy (E + E′)/2 in the product ρ(E)ρ(E′) of two level densities before doing the Fourier
transform w.r.t. the energy difference E − E′ and (ii) over a time interval small compared
to the Heisenberg time. Most orbit pairs γ, γ ′ interfere destructively in the double sum (2).
Finite contributions arise only from families of pairs wherein the action difference Sγ − Sγ ′

can be continuously steered through the quantum scale h̄ towards zero, by varying parameters
defining the family (for early premonitions see [4]). Periods and stability amplitudes do not
differ noticeably within such an orbit pair.

Berry’s ‘diagonal approximation’ [5] includes the trivial pairs {γ, γ } and, given T
invariance, {γ, γ̄ } where the overbar indicates time reversal; it yields K(1) = β

∑
γ |Aγ |2δ(τ −

Tγ

TH

) = βτ where β = 1 without and β = 2 withT invariance, due to the doubling of contributing

pairs in the latter case. The sum
∑

γ |Aγ |2δ(τ − Tγ

TH

) = τ , known as the sum rule of Hannay
and Ozorio de Almeida (HOdA) [6], reflects ergodicity for long periodic orbits. In view of (1)
the diagonal approximation gives Kuni in full, and the first term of the τ -expansion of Korth.

Sieber and Richter [7] recently found a family of orbit pairs which for the T invariant
Hadamard–Gutzwiller model yields the quadratic term of the τ -expansion, K

(2)
orth = −2τ 2, as

in (1). Each Sieber–Richter (SR) pair has a close self-encounter which in configuration space
looks like a small-angle crossing for one orbit and like a narrowly avoided crossing for the
partner orbit. Generalizations to arbitrary hyperbolic systems with two freedoms were given
in [8–10] and for more freedoms in [11].

Before identifying the new families of orbit pairs giving K
(3)
orth = 2τ 3,K(3)

uni = 0 we must
briefly review SR. Each self-encounter involves two orbit stretches which are nearly mutually
time reversed; this may be depicted as �� (or ������), the arrows indicating a sense of
traversal. On either side of the ‘encounter graph’ ��, each of the two orbits has a long
loop attached. Assuming symbolic dynamics available (to uniquely define periodic orbits and
even, approximately, short orbit stretches by symbol sequences; our results are valid more
generally) we could write E and Ē for the two (nearly) mutually time reversed orbit stretches
in the encounter region, R,L for the two long loops, and L̄ for the time reverse of L; we may
thus write ERĒL for an orbit and ERĒL̄, LER̄Ē for its SR partners [8, 12]. Note that the orbits
in a SR pair traverse one loop in the same sense while the senses of traversal are opposite for
the other loop; here, T invariance is seen as required for SR pairs to exist.

Following [9, 10, 13] we parametrize an encounter with the help of a surface of section P
transverse to an orbit, say γ = ERĒL, somewhere within the encounter; P is two dimensional
for f = 2, the case we limit ourselves to. The stretch E pierces through P at a point xa

which can be made the origin of a coordinate system spanned by tangent vectors ês and êu

to the stable and unstable manifolds of γ through xa in P . A second piercing is associated
with Ē and thus opposite in sense; it happens after the traversal of the right loop at a point
xb. We define a close-encounter region by requiring the unstable and stable components of
the difference T xb − xa to respect a classically small bound c independent of h̄,

T xb − xa = uêu + sês |u| � c |s| � c. (3)
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Moving P we leave the encounter after a time tu given (asymptotically) by |u|eλtu = c.
Conversely, we find the start of the encounter going backwards in time by ts with |s|eλts = c;
here λ is the Lyapunov exponent of the system. The duration of the encounter is thus

tenc = ts + tu = 1

λ
ln

c2

|us| . (4)

Roughly, linearization of the dynamics about any point within the encounter breaks down at
either end.

As was shown in [8–10, 13] the partner orbit ERĒL̄ pierces throughP first at xp
a = xa +uêu

and then at x
p

b with T x
p

b = xa + sês . Moreover, the orbits in a SR pair differ in action by the
area of the parallelogram spanned by the four points xa, x

p
a , T xb, T x

p

b [9, 10],

�S = us; (5)

that product is canonically invariant and thus independent of the precise location of the surface
P . (The vectors ês , êu are pairwise normalized as ês ∧ êu = 1.) Inasmuch as weighty
contributions to the form factor must have �S = O(h̄), we can conclude that the duration of
relevant encounters has the order of the Ehrenfest time TE = 1

λ
ln c2

h̄
, much smaller than the

period T = O(TH ).
To evaluate K(2)(τ ) we need the cumulative duration P(u, s|T ) du ds of all orbit stretches

within self-encounters of a long orbit γ of period T = O(TH ), with unstable and stable
components of T xb − xa in [u, u + du] and [s, s + ds]. Ergodicity yields ([8–10] use different
conventions)

P(u, s|T ) du ds = T (T − 2tenc)�
−1 du ds (6)

with � the volume of the energy shell. This results from integrating the ergodic return
probability density �−1 over the two times of piercing of the orbit through a section P . The
factor T indicates that one piercing, say the one at xa , may occur at any time in the interval
[0, T ]. The time of the subsequent piercing at xb can then lie only in an interval of length
T −2tenc, hence the second factor in (6); this is because both traversals of the encounter region
have length tenc and may not overlap. (Overlapping stretches E, Ē are either impossible, as in
the Hadamard–Gutzwiller model [12], or indicate an orbit with an almost self-retracing loop
identical with its SR partner [8].) Note that in the density P(u, s|T ) each encounter is weighted
with the duration N tenc; the combinatorial factor N = 2 arises since in γ = ERĒL the two
stretches E, Ē are equivalent; we must therefore employ P(u,s|T )

N tenc
, to count each encounter only

once3.
The contribution to the form factor reads K

(2)
orth = (∑

γ |Aγ |2δ(τ − T
TH

)) ∫ c

−c
du ds

1
2tenc

P(u, s|T )2 cos(us/h̄). The sum
(∑

γ . . .
)

gives the factor τ through the HOdA sum

rule, as for K(1). The integral gets no contribution from the leading term T 2/� in P, and
this is why the O(TE/TH ) correction in (6) is important; the integral with P → −2tencT/�

becomes independent of the bound c in the limit h̄ → 0 and is easily found (since tenc cancels
from the integrand and TH = �/2πh̄) as −2τ . The RMT result K(2) = −2τ 2 is thus
recovered.

One might wonder why no ‘parallel’ encounters with graphs �� come into play. The
simple reason is that the would-be SR partner of an orbit EREL decomposes into a ‘pseudo-
orbit’ (separate periodic orbits ER and EL), not admitted to the Gutzwiller sum in the first

3 The appearance of P(u, s|T )/2tenc may also be seen as due to the identity
∫ c

−c
du dsδ(us − �S) 1

2tenc
P(u, s|T ) =

λP |us=�S ; note that u, s enter P(u, s|T ) and tenc only through the product us = �S. We may interpret λP |us=�Sd�S

as the number of encounters (thus the number of SR partners) with action difference in [�S,�S + d�S], for period-T
orbits. Analogous identities hold for the densities met with below for τ 3.
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Figure 1. The five orbit pairs entering τ 3. Labels describe encounters as antiparallel or antiunitary-
symmetry-required, parallel, intertwined, serial, and cloverleaf.

place. However, parallel encounters will be met with below. The quantification (3) of ‘close’
must then be changed to xb − xa = uêu + sês, |u| � c, |s| � c.

The foregoing review of SR has highlighted those twists of the original formulation of
[7], in particular the appearance of P(u,s|T )

2tenc
, which make the extension to higher orders in τ a

rather elegant travail, to which we now turn.

2. Orbit pairs contributing in third order

We now present five families of orbit pairs relevant for τ 3. They can be constructed from two
SR ‘switches’ �� / ������. Three families have two separate encounters wherein the orbits differ
and four intervening ‘loops’ near identical for both orbits; two more families arise as one of
the loops shrinks, to let the two encounters overlap, see figure 1.

Starting with two independent encounters, we must obviously check three possibilities:
(aa) both ‘antiparallel’, pictorially �� ��, (ap) antiparallel and parallel, i.e. �� �� and
( pp) both parallel, i.e. �� ��. For all of them there are two distinct ways of filling in
intervening lines, with the two encounters either in series (s) or intertwined (i). In symbolic
notation, those two ways read for case (aas) E1AĒ1BE2CĒ2D (in series) and for case
(aai) E1AE2BĒ1CĒ2D (intertwined); here E1, Ē1 (E2, Ē2) represent the two orbit stretches
of the first (second) antiparallel encounter which are nearly mutually time reversed, while the
remaining symbols refer to intervening lines; one immediately checks that only the aas orbit
allows for a partner orbit, E1ĀĒ1BE2C̄Ē2D, while the would-be partner of the aai orbit turns
out be a pseudo-orbit decomposing into the two periodic orbits E1AE2C̄ and E1B̄Ē2D. In
the same vein we find that for (ap) only the api orbit and for ( pp) only the ppi orbit have
non-decomposing partners. We have thus identified three families of orbit pairs with two far
apart self-encounters. Clearly, ppi pairs arise even without T invariance, while aas and api
pairs require that symmetry.

Now on to the families resulting from shrinking away one of the four loops in the foregoing
families. The three remaining loops make for a cloverleaf (c) structure; the encounter region
accommodates a triple of oriented short (O(TE)) stretches with encounter graphs ��

�
( pc) and

��
�

(ac); in symbolic notation, they involve E, E, E and E, Ē, Ē, respectively. Schematically,
the two types of cloverleaf orbits look like the thick lines in figure 1 ac, pc. We shall argue
that each has a unique partner, shown as dashed lines in figure 1. The family ( pc) with three



Letter to the Editor L35

parallel orbit stretches ��
�

in the encounter does not require T invariance while the ��
�

family
(ac) does.

To check the uniqueness of the partner for ac and pc we start from the respective thick
lines in figure 1. Each candidate for partnership must have its three long loops nearly identical
with those of the starting orbit, save possibly for time reversal; those loops are differently
connected in the encounter region. A sextet of cloverleaf orbits thus seems to arise, whose
encounter graphs are (without arrows, momentarily) ������ ������ ���� ���� ����. The last three
immediately drop from candidacy since they represent SR partners of contributing to τ 2 or
entail decomposing pseudo-orbits. Now putting arrows on , say for ac as ��

�
, and hooking on

the three loops as in the thick line of figure 1 ac, we find only ������ to lead to a non-decomposing
partner, the dashed line in figure 1 ac with the encounter graph �����	��
 (plus, of course its time
reverse); the uniqueness of the pc partner (up to time reversal, if T invariance holds) is shown
similarly.

3. Duration and action differences

For the independent-encounter pairs aas, api, ppi the action differences of the two encounters
sum up to �S = u1s1 + u2s2. The triple encounters ac, pc require extra thought.

Beginning with ac we employ a surface of section P through the encounter region
and denote the three points of piercing by xa,b,c. As in (3) we have T xb − xa = ubêu +
sbês, T xc − xa = ucêu + scês ; the bound c must be respected by all six distances
|ub|, |sb|, |uc|, |sc|, |ub − uc| ≡ |ubc|, |sb − sc| ≡ sbc and the cloverleaf encounter lasts for

tcl
enc = 1

λ
ln

c2

max{|ub|, |uc|, |ubc|} max{|sb|, |sc|, |sbc|} . (7)

Again, relevant encounters will have durations of the order of the Ehrenfest time tE = 1
λ

ln c2

h̄
.

Now look at an ac pair {γ, γ p} with encounter graphs ��
�

and �����	��
 . To find the action
difference we proceed in two steps. In the first, we employ an auxiliary orbit, the SR partner
γ ′ of γ related to the encounter of the ‘upper two’ stretches, labelled a, b, leaving the ‘lowest’
stretch c as in γ . For γ ′ the encounter region is ���	���. According to what we have said above
about the four points of piercing through the surface of section of an SR encounter the piercings
of γ ′ occur at x ′

a = xa + ubêu and x ′
b with T x ′

b = xa + sbês ; moreover, the action difference
within {γ, γ ′} is given by (5) as Sγ ′ − Sγ = ubsb. In our second step we arrive at the ac
partner γ p of γ as the SR partner of γ ′ w.r.t. the stretches a, c. Once again invoking what
we know about the four piercings in an SR encounter we have x

p
a = x ′

a + (uc − ub)êu and
T x

p
c = x ′

a + scês , and the action difference Sγ p − Sγ ′ = (uc − ub)sc. The action difference of
the ac pair (valid also for pc) thus reads

�S = Sγ p − Sγ = ubsb + ucsc − ubsc. (8)

The term ubsc represents an ‘interaction’.

4. τ 3-contributions from two simple encounters

We first generalize the density (6) to P(u1, s1, u2, s2|T ) (up to the factor du1 ds1 du2 ds2)
the ‘area’ of times

(
t1
a , t2

a

) ∈ [0, T ]2 such that the points
{
x

µ
a = x

(
t
µ
a

)
, µ = 1, 2

}
of

piercing are followed by piercings at x
µ

b = x
(
t
µ

b

)
with unstable and stable components of

x
µ

b − x
µ
a (for parallel encounters) and T x

µ

b − x
µ
a (for antiparallel encounters) in the intervals

[uµ, uµ + duµ], [sµ, sµ + dsµ]. We obtain

P(u1, s1, u2, s2|T ) = 1

6�2
T (T − 2(tenc1 + tenc2))

3 (9)
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by integrating the ergodic probability density �−2 for two encounters over the four times{
t
µ
a , t

µ

b , µ = 1, 2
}
, respecting the order of those times dictated by the ‘diagrams’ aas, api, ppi

and the general rule that an orbit must leave one encounter region before reentering or entering
the next one; the latter rule in fact separates independent-encounter from cloverleaf families.
The restrictions on the times of piercing in question give rise to the small but decisive
corrections tenc,µ in (9), as before in (6).

Again in analogy with (6), the density (9) overcounts a pair of simple encounters, by
a factor which we shall argue to be N tenc1tenc2. Obviously, the times of piercing may lie
anywhere during the respective encounters, hence the product of the two durations. The
factor N is of combinatorial nature. For instance, in aas pairs the two antiparallel encounters
are indistinguishable such that Naas = 2; likewise, Napi = 2 since the two stretches of,
say, the parallel encounter are indistinguishable; finally, in ppi pairs all four orbit stretches
(symbolically, E1, E2, E1, E2) are indistinguishable, hence Nppi = 4.

For T invariance, (2) gives K
(3)
orth,ind = τ

∫ c

−c
du1 . . . ds2

1
N tenc1tenc2

P(u1 . . . s2|T )2 cos �S
h̄

where we have already allowed the HOdA sum rule to yield a factor τ as above and used
the overcounting factor N as an indicator for the cases aas, api, ppi. Using the action
difference (5) for both encounters and the weight (9) it is easily found that only the part

1
6�2 × 3 × 4 × T 2tenc1tenc2 in P survives the integration, and actually yields the square of the
twofold integral met with for τ 2; all other terms and all c dependence vanish with h̄ → 0. We
thus have

K
(3)
orth,ind = 8

N
τ 3 =

{
4τ 3 for aas, api
2τ 3 for ppi.

(10)

For dynamics without T invariance, however, only ppi pairs exist and yield K
(3)
uni,ind = τ 3, one

half the ppi term in (10) since a ppi orbit now has no time reverse.

5. τ 3-contributions from triple encounters

Both for ac and pc pairs, by reasoning as before we have the density

P cl(ub, sb, uc, sc|T ) = T
(
T − 3tcl

enc + · · · )2

2�2
= −3T 2tcl

enc

�2
· · · (11)

where the dots point to terms killed by the integration to come, as h̄ → 0. The crucial term
∝ tcl

enc is due to minimal loop lengths. The orbit must leave an encounter before reentering in
the antiparallel or parallel sense; otherwise, an SR pair already accounted for in τ 2 would arise
in the antiparallel case, whereas the parallel case would lead to a new family with stretches
involved in encounters resembling multiple repetitions of shorter periodic orbits; such families
turn out irrelevant for h̄ → 0.

To count each cloverleaf only once we divide out the familiar N tcl
enc. For pc encounters

we have Npc = 3 since the three parallel stretches ��
�

are indistinguishable while ac
encounters ��

�
entail Nac = 1. Given T invariance, the form factor picks up K

(3)
orth,cl =

τ
∫ c

−c
dub . . . dsc

1
N t clenc

P cl(ub . . . sc|T )2 cos �S
h̄

. The limit h̄ → 0 yields

K
(3)
orth,cl = − 6

N
τ 3 =

{−6τ 3 for ac

−2τ 3 for pc.
(12)

Without T invariance, no ac pairs exist and pc pairs, not accompanied by time inverses, give
but K

(3)
uni,cl = −τ 3.
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6. Conclusions and outlook

Adding contributions from independent and cloverleaf encounters we get K
(3)
orth = (4 + 4 +

2 − 6 − 2)τ 3 = 2τ 3 and K(3)
uni = 0, as in (1). To third order in τ at least, then, semiclassical

treatment of individual hyperbolic dynamics gives the universal form factor characteristic of
ensembles of random matrices.

The five families of orbit pairs met here resemble diagrams known from field theoretic
treatments of disordered systems [14] and from quantum graphs [15]. The analogy between
classical orbits and diagrams in field theory should persist in higher orders. Orbit pairs (alias
diagrams) with n − 1 separate simple encounters contribute to τ n; upon shrinking intervening
loops we expect to find all other relevant orbit pairs. The weight of each family includes
a correction, due to the ban of encounter overlap and small as a power of TE

TH
, exclusively

affecting the form factor.
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